电工之家_电工基础知识学习网站
当前位置:电工之家 > 高中物理 > 正文

麦克斯韦方程组的微分形式解释

时间:2018-03-12 20:27 来源:电工之家 手机版

麦克斯韦方程组的微分形式
麦克斯韦方程组的微分形式解释
麦克斯韦方程组的微分形式解释
麦克斯韦方程组的微分形式解释
麦克斯韦方程组的微分形式解释
(1) 高斯定律:    电场E的散度,等于在该点的电荷密度ρ(乘上系数1/ε0);
(2) 法拉第定律:   电场E的旋度,等于在该点的磁场B的变化率(乘上系数-1);
(3) 高斯磁定律:   磁场B的散度,等于0;
(4) 安培麦克斯韦定律:磁场B的旋度,等于在该点的电流密度J(乘上系数μ0),加上在该点的电场E的变化率(乘上系数μ0ε0)。
我们可以看出,电荷和电流对电场和磁场干的事情是不一样的:电荷的作用是给电场贡献一些散度,而电流的作用是给磁场贡献一些旋度。然而变化的电磁场对对方干的事情是一样的,都是给对方贡献一些旋度。
想看一些具体例子的同学要失望了。微分形式的例子比较难举,因为微分形式主要是让计算更加简便,在数学上比较有优势,而应用到具体的现象上则不那么显而易见。不过,至少静电磁场的例子还是可以举的。比如,我们知道电场线总是从正电荷出发、然后进入负电荷,这正是在说电场的散度在正电荷处为正,在负电荷处为负。再例如我们知道磁场线总是绕着电流,而不会进入或发源于电流,这也就是在说磁场有旋度而一定没有散度。